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Abstract: The Electrical and Electronics Engineering program requires a balance between theoretical 
knowledge and practical application, making students’ performance optimization essential in meeting 
industry demands. This study utilized descriptive statistics, Pearson Correlation Analysis, and Principal 
Component Analysis (PCA) to evaluate academic performance in the EEE program at Mbeya University of 
Science and Technology (MUST). By examining 16 core courses, the study identified key determinants of 
students’ success, course interdependencies and areas for curriculum enhancement. Descriptive statistics 
revealed significant variability in performance, with EE 8401 (Industrial Practical Training 3) recording the 
highest mean (79.98) and EE 8402 (Phase AC Synchronous Machines) the lowest (48.11), highlighting 
disparities in instructional effectiveness. Pearson Correlation Analysis shows strong correlations among 
theoretically aligned courses, moderate correlations among related subjects, and weak or negative 
correlations in distinct learning domains, emphasizing the need for targeted interventions and curriculum 
adjustments. PCA findings confirmed that three Principal Components explained 58.85% of the variance, 
representing theoretical foundations, applied project-based learning and specialized hands-on training. Scree 
plot and eigenvalue analysis validated dimensionality reduction, enhancing data interpretation. Principal 
Component loadings highlight academic constructs, with PC1 reflecting analytical competencies, PC2 
capturing project-based courses and PC3 representing specialized training. This study recommends aligning 
theoretical courses with standardized assessments, integrating industry collaborations in project-based 
learning and refining assessment models for specialized training. Future research should explore longitudinal 
trends in Principal Components, external influences on high-uniqueness courses and students’ feedback 
integration. By implementing data-driven strategies, institutions can refine engineering curricula, bridge 
performance gaps and enhance student success outcomes. 
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Introduction 
The Electrical and Electronics Engineering (EEE) 
program is among the most technically rigorous and 
impactful disciplines, requiring students to integrate 
complex theoretical concepts with practical 
applications. This field plays a crucial role in 
addressing global challenges, such as renewable 
energy development, industrial automation and 
adoption of emerging technologies like the Internet 
of Things (IoT) and Artificial Intelligence (AI) (Alawin 
et al., 2016; Nurhidayat, et al., 2024). With the 

increasing demand for highly skilled professionals in 
these domains, assessing and enhancing students’ 
performance remains a critical priority in 
engineering education (Kabakchieva, 2012). 
Traditional assessment methods often fail to 
capture the multifaceted nature of academic 
success, necessitating data-driven analytical 
approaches to identify key determinants of student 
performance.  
Principal Component Analysis (PCA) has emerged as 
a powerful multivariate statistical technique for 
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evaluating academic performance by simplifying 
complex datasets and extracting essential 
performance determinants. PCA enables educators 
to analyze interdependencies among courses, 
identify key predictors of success and offer 
actionable insights for curriculum enhancement 
(Borges et al., 2018; Alam & Khatun, 2021).  
 

Prior research suggests that foundational 
knowledge in mathematics and physics, teaching 
methodologies and technological proficiency are 
critical factors influencing students’ performance 
(Mills & Treagust, 2003; Felder & Brent, 2024). PCA 
has also demonstrated strong correlations between 
active learning approaches, such as problem-based 
and project-based learning and improved academic 
outcomes (Mills & Treagust, 2003). 
 

Moreover, technological integration, including 
simulation tools and virtual laboratories like 
MATLAB and Simulink, significantly enhances 
students' ability to tackle real-world engineering 
challenges (Nurhidayat et al., 2024; Li and Liang et 
al., 2024). Active students’ engagement in academic 
and extracurricular activities further strengthens 
learning outcomes, as evidenced by PCA analysis 
(Felder & Brent, 2024; Kuh et al., 2008). 
Additionally, timely and constructive feedback is 
essential in mastering complex engineering 
concepts and preparing students for the industry's 
evolving demands (Nicol & Macfarlane-Dick, 2006; 
Gibbs & Simpson, 2005). By leveraging PCA, this 
study sought to establish the most influential factors 
affecting student performance in the Electrical and 
Electronics Engineering programme at Mbeya 
University of Science and Technology (MUST), 
informing targeted interventions and optimising 
teaching strategies.  
 

Literature Review 

Academic performance analysis is crucial in 
understanding students’ success factors and 
developing effective educational strategies. 
Traditionally, descriptive statistics, regression 
analysis and correlation studies have been employed 
to assess academic performance (Field, 2024). For 
instance, Martínez-Cervantes et al. (2013) examined 
the effect of basic infrastructure on academic 
achievement in Mexican technological high schools. 
Using regression analysis and structural modelling, 
they found that an increase in students per 
classroom negatively impacted reading and 
mathematical abilities, lowering the overall 
academic performance. In addition, Hyytinen et al. 

(2014) explored the relationship between students' 
critical thinking and epistemological beliefs in 
problem-solving contexts. The study applied 
correlation analysis and found that students with 
deeper processing approaches to learning 
demonstrated stronger essential abilities of thinking, 
which in turn influenced their academic 
performance. In another study, Serebwa et al. (2017) 
investigated performance target setting and service 
delivery at Kirinyaga University, Kenya, using 
descriptive statistics and multiple linear regression 
analysis. Their study revealed that performance 
contracting parameters significantly affected service 
delivery and, by extension, academic effectiveness 
(Serebwa et al., 2017). These conventional 
approaches, however, often fail to capture the 
multidimensional relationships among academic 
variables, resulting in an incomplete understanding 
of students’ success determinants (Jolliffe & Cadima, 
2016). Given the complexity of students’ 
performance data, more sophisticated methods, 
such as Principal Component Analysis (PCA), have 
been introduced to extract meaningful insights. 
 

PCA was first introduced by Karl Pearson (1901) as a 
statistical technique to transform correlated 
variables into a set of linearly uncorrelated 
components, primarily to reduce dimensionality 
while preserving essential information. Later, Harold 
Hotelling (1933) extended PCA to multivariate 
analysis, making it widely applicable across various 
domains, including education. Over the past two 
decades, PCA has increasingly been used in student 
performance analysis to extract meaningful patterns 
from complex educational datasets. This allows 
researchers to identify key factors influencing 
academic success. By reducing the dimensionality of 
large student performance datasets, PCA enables 
more effective analysis of factors, such as 
socioeconomic background, learning behaviours and 
institutional resources, which traditional methods 
like regression analysis and correlation studies might 
overlook (Pearson, 1901; Hotelling, 1933). Studies 
leveraging PCA in education have demonstrated its 
ability to enhance the predictive modelling of 
students’ outcomes and optimise teaching strategies 
based on data-driven insights. This shift towards 
more sophisticated analytical methods underscores 
the growing need to harness advanced statistical 
tools to improve educational assessment and 
intervention strategies.  
 

Previous studies used descriptive and inferential 
statistical methods, including mean, standard 
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deviation, t-tests and ANOVA to analyse students’ 
performance trends (Cohen, 2013). For example, t-
tests have been used to compare students’ 
performance between two groups, such as gender-
based differences or different teaching methods 
(Field, 2024). ANOVA has been widely applied to 
assess performance differences across multiple 
categories, such as the impact of different 
instructional approaches or institutional factors on 
academic success (Heiman, 1992). Descriptive 
statistics, including mean and standard deviation, 
provide a foundational understanding of students’ 
performance trends, helping educators and 
policymakers to make data-driven decisions to 
enhance learning outcomes (Tabachnick et al., 
2019). While these methods provide essential 
insights, they do not effectively account for the 
interdependencies between multiple academic 
subjects. Pearson correlation analysis, commonly 
used to explore relationships between course 
performance variables, is particularly limited when 
dealing with large datasets containing numerous 
variables (James et al., 2013). Regression models 
and machine learning techniques, such as decision 
trees and support vector machines have also been 
used to predict academic performance (Borges et al., 
2018). While these methods provide prediction 
accuracy, they often lack interpretability and require 
extensive feature engineering, which can 
undesirably introduce bias (Alam & Khatun, 2021). 
 

PCA has emerged as a robust tool for addressing 
these limitations by reducing dimensionality and 
identifying key academic success factors (Tabachnick 
& Fidell, 2019). By transforming highly correlated 
variables into independent principal components, 
PCA allows educators and researchers to analyse 
academic performance more effectively (Jolliffe & 
Cadima, 2016).  
 

Methodology 
This study examined factors influencing students’ 
performance in the Bachelor of Electrical and 
Electronics Engineering (EEE) program, using a 
retrospective correlational research design and 
Principal Component Analysis (PCA). The study 
identified key performance determinants, course 
interdependencies and curricular implications 
through descriptive statistics, Pearson correlation 
analysis and PCA by analysing students’ records.  
 

Research Design 
This study employed a retrospective correlational 
research design, utilising PCA to assess the key 

factors influencing students’ performance in the 
Bachelor of Electrical and Electronics Engineering 
(EEE) program at Mbeya University of Science and 
Technology. A correlational research design 
examines relationships between variables without 
manipulating them, making it appropriate for this 
study as it seeks to identify underlying academic 
performance patterns based on existing students’ 
records (Tabachnick & Fidell, 2019). The 
retrospective nature of the design enables the 
analysis of historical data to uncover trends and 
associations. At the same time, PCA was selected for 
its effectiveness in dimensionality reduction, 
allowing for the identification of essential factors 
that significantly impact academic success (Jolliffe & 
Cadima, 2016). 
 

Population and Sampling 
The population comprised 169 final-year students in 
the Bachelor of Electrical and Electronics 
Engineering (EEE) programme at Mbeya University 
of Science and Technology, who had completed all 
16 core courses. A purposive sampling technique 
was employed to ensure that only students with 
complete academic records were included in the 
study. Creswell and Creswell (2017) emphasised that 
purposive sampling is beneficial when researchers 
aim to select participants with specific 
characteristics relevant to the study's objectives, 
ensuring the collection of rich and meaningful data. 
They argued that this technique is commonly used in 
quantitative and qualitative research to enhance the 
validity of findings by focusing on cases that best 
represent the population under investigation. They 
recommended that researchers clearly define their 
inclusion criteria to minimise bias and ensure data 
reliability. In this study, purposive sampling was 
appropriate as it allowed for selecting students with 
comprehensive academic records, ensuring accurate 
Principal Component Analysis and meaningful 
insights into the key determinants of academic 
performance.  
 

A sample of 169 students was deemed adequate and 
adhered to the widely accepted rule of 5 or more 
cases per variable (Hair et al., 2010). For this study, 
there were 16 courses, which are the variables, and 
for the application of PCA, it is adequate since the 
sample is more than 5 times the number of 
variables. 
 

Instruments 
The study used the Students’ Information 
Management System (SIMS) to extract academic 
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records, course grades and GPA scores. The author 
developed a structured data extraction sheet to 
ensure consistency and eliminate redundant data 
(Field, 2024).  
 

Validity and Reliability 
Content validity was established by confirming that 
the selected academic variables, the courses and the 
respective students' marks were directly relevant to 
students’ performance analysis since they are the 
inputs to the statistical analysis (Bolarinwa, 2015). 
Construct validity was tested through factor 
loadings, and eigenvalues and cumulative variance 
were explained, ensuring that the extracted 
components meaningfully represented students’ 
performance factors (Tabachnick & Fidell, 2019). 
Tabachnick and Fidell (2019) discussed using factor 
loadings, eigenvalues and cumulative variance 
explained as key indicators for assessing construct 
validity in exploratory factor analysis (EFA). They 
emphasised that factor loadings should typically 
exceed 0.40 to indicate meaningful relationships 
between variables and factors. Eigenvalues are more 
significant than one and are commonly used to 
determine the number of factors to retain based on 
Kaiser’s criterion. The cumulative variance explained 
should ideally exceed 50-60% to ensure that the 
extracted factors adequately represent the 
underlying construct. 
 
Internal consistency was assessed using the Kaiser-
Meyer-Olkin (KMO) measure of sampling adequacy 
to evaluate the reliability of the dataset. A KMO 
value above 0.70 was considered acceptable, 
indicating that the sample was adequate for Factor 
Analysis (Kaiser, 1974). According to Kaiser (1974), 
KMO values between 0.70 and 0.79 are considered 
"middling," between 0.80 and 0.89 are considered 
"meritorious" and values above 0.90 are 
"marvellous," demonstrating strong factorability.  
 

Statistical Treatment of Data 
The collected data underwent several statistical 
procedures, ensuring a robust analysis: The Jamovi 
software and the MS Excel spreadsheet were used 
to process and analyse data, as well as statistical 
analysis, visualisation and PCA implementation. 
Descriptive statistics were calculated to summarise 
the data distribution and assess normality, including 
mean, standard deviation, skewness and kurtosis 
(Field, 2024). According to Field (2024), skewness 
values between -1 and 1 indicate approximately 
normal distribution, while kurtosis values should fall 

within the range of -2 to 2 to avoid significant 
deviations from normality.  
 

Pearson Correlation Analysis examined relationships 
between course performances, determining the 
strength and direction of linear associations (Cohen, 
2013). Cohen (2013) suggests that correlation 
coefficients of 0.10–0.29 represent a small effect, 
0.30–0.49 a moderate effect and 0.50 or above a 
strong effect, guiding the interpretation of course 
relationships. Principal Component Analysis (PCA) 
was conducted following the Kaiser criterion, where 
components with eigenvalues greater than 1 were 
retained to ensure meaningful data reduction 
(Jolliffe & Cadima, 2016). Jolliffe and Cadima (2016) 
emphasised that retaining components with 
eigenvalues above 1 preserves significant variance 
while eliminating redundant factors. Additionally, a 
scree plot was used to determine the number of 
meaningful components visually.  
 

A varimax rotation was applied to improve 
interpretability, maximising variance among factor 
loadings and aiding in the distinct separation of 
components (Hair et al., 2010). Hair et al. (2010) 
highlight that varimax rotation enhances factor 
clarity by reducing complex cross-loadings, making 
the extracted components more interpretable.  
Cluster analysis was performed using Principal 
Component Scores to classify students based on 
performance patterns (Parmar & Bhavsar, 2020). 
According to Parmar and Bhavsar (2020), clustering 
based on principal components reduces 
dimensionality while preserving essential 
performance-based distinctions among students. 
The Shapiro-Wilk Test was applied to assess the 
normality of data distribution, ensuring that PCA 
assumptions were met (Ghasemi & Zahediasl, 2012; 
Shapiro et al., 1965). Ghasemi and Zahediasl (2012) 
report that Shapiro-Wilk is particularly effective for 
small to medium-sized samples, providing a reliable 
test for normality.  
 

All statistical analyses were conducted using Jamovi 
Software (James et al., 2013), an open-source 
statistical platform that integrates PCA, correlation 
analysis and clustering methodologies. James et al. 
(2013) described Jamovi as a user-friendly 
alternative to traditional statistical software, offering 
robust analytical tools for educational research.  
 

Ethical Considerations 
The study adhered to ethical principles to ensure the 
confidentiality and protection of student records. 
Research clearance was obtained from Mbeya 
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University of Science and Technology, ensuring the 
study adhered to institutional ethical guidelines. In 
addition to university approval, authorisation from 
relevant government authorities was sought to 
comply with national research regulations and 
ensure lawful data collection. To protect 
participants' rights, anonymity and confidentiality 
were strictly maintained. No personally identifiable 
information was collected or disclosed and all data 
was anonymised to prevent the identification of 
individual respondents. Confidentiality was further 
upheld by securely storing research data and limiting 
access to authorised personnel only. 
 

Results and Discussion 
This section presents the findings and discussion. 
The results are systematically analysed and 
interpreted to reflect the study’s objectives, 
ensuring clarity and coherence.  Understanding 
students’ performance across engineering courses 
requires an in-depth analysis of descriptive statistical 
measures, including central tendency, variability, 
skewness and normality. These statistical indicators 
provide critical insights into academic consistency, 
performance disparities and areas requiring 
intervention. 

 
 

Evaluating Sampling Adequacy: Kaiser-Meyer-Olkin 
(KMO) Measure and Its Implications for Factor 
Structure 
The Kaiser-Meyer-Olkin (KMO) measure of sampling 
adequacy was used to assess the suitability of the 
dataset for Factor Analysis. The overall KMO value 
obtained was 0.80, which falls within the 
“meritorious” range (Kaiser, 1974), indicating that 
the data is adequately suited for Factor Analysis 
(Table 1). The individual Measure of Sampling 
Adequacy (MSA) values for each variable provide 
insights into their factorability.  
 

Most variables demonstrated acceptable KMO 
values above 0.70, suggesting they contribute 
effectively to the factor structure. Notably, EE 8405 
(0.94), EE 8406 (0.94), EE 8410 (0.92), EE 8411 (0.91) 
and EE 8415 (0.95) showed “marvellous” sampling 
adequacy, further reinforcing the dataset's 
robustness. However, EE 8401 (0.28), EE 8408 (0.43) 
and EE 8416 (0.49) exhibited low KMO values, 
indicating weak factorability and potential issues 
with multicollinearity or insufficient correlation with 
other variables. GPA (0.68) also falls slightly below 
the recommended 0.70 threshold, suggesting 
borderline adequacy. These variables may require 
further examination, such as removal or 
transformation, to enhance the overall factor 
structure.

 

Table 1: KMO Measure of Sampling Adequacy 

Description MSA 
 

Description MSA 
 

Description MSA 

 

Description MSA 

Overall 0.8 
 

 
  

 
  

 
 

EE 8413 0.75 
 

EE 8404 0.8 
 

EE 8408 0.43 
 

EE 8412 0.79 

GPA 0.68 
 

EE 8405 0.94 
 

EE 8409 0.88 
 

EE 8414 0.89 

EE 8401 0.28 
 

EE 8406 0.94 
 

EE 8410 0.92 
 

EE 8415 0.95 

EE 8402 0.83 
 

EE 8407 0.9 
 

EE 8411 0.91 
 

EE 8416 0.49 

EE 8403 0.74                   

 

Student Performance across Subjects 
By examining the descriptive statistics of students’ 
performance across 16 engineering courses (Table 
2), it is possible to identify trends that inform 
curriculum development, teaching strategies and 
academic support mechanisms (Field, 2024; 
Tabachnick et al., 2019). 
 

The measures of central tendency, specifically mean 
and median, offer a foundational understanding of 
students’ performance across courses. The findings 
indicate that EE 8401 (Industrial Practical Training 3) 
recorded the highest mean score (79.98), suggesting 
a course structure that supports students’ success. 
In contrast, EE 8402 (Phase AC Synchronous 

Machines) had the lowest mean score (48.11), 
highlighting significant performance challenges. 
According to Biggs et al., 2022), mean scores often 
reflect the effectiveness of instructional 
methodologies, assessment designs and students’ 
engagement levels. The discrepancy between mean 
and median values in some courses suggests the 
presence of outliers or non-uniform performance 
distributions, which may require further pedagogical 
adjustments (Heiman, 1992). 
 

Students’ performance variability is assessed using 
Standard Deviation (SD), which measures score 
dispersion. Courses such as EE 8402 (SD = 10.52) 
and EE 8409 (SD = 11.04) exhibit high variability, 
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suggesting diverse students’ competencies or 
inconsistencies in teaching approaches. High 
variability in students’ performance, as indicated by 
standard deviations of 10.52 and 11.04, suggests 
significant differences in achievement levels, 
meaning that some students excel while others 
struggle. Whether high variability is considered good 
or bad depends on contexts. On the one hand, it 
highlights diverse learning needs, necessitating 
tailored instructional strategies, such as 
differentiated teaching and adaptive learning (Biggs 
et al., 2022). On the other hand, excessive variability 

might indicate inconsistencies in instruction, 
assessment difficulty or gaps in prior knowledge, 
potentially disadvantaging some students (Cohen, 
2013; Allen & Yen, 2001). Conversely, EE 8405, with 
a low standard deviation (SD = 3.94), reflects 
uniform performance, which could indicate effective 
instructional delivery and a well-structured 
assessment framework (Hattie, 2008). However, too 
little variability may also suggest a lack of 
differentiation, where assessments fail to capture 
the full range of student abilities. 

 

Table 2: Descriptive statistics on the students’ performance 

Description 
EE 

8401 
EE 

8402 
EE 

8403 
EE 

8404 
EE 

8405 
EE 

8406 
EE 

8407 
EE 

8408 
EE 

8409 
EE 

8410 
EE 

8411 
EE 

8412 
EE 

8413 
EE 

8414 
EE 

8415 
EE 

8416 
GPA 

Mean 79.98 48.11 53.11 63.54 62.27 56.24 61.31 65.08 66.38 59.07 55.12 59.84 58.15 69.74 70.07 57.62 3.61 

Median 80 46 52 64 63 56 61 65 67 59 55 61 60 70 71 58 3.6 

Standard 
deviation 

5.23 10.52 9.26 6.64 3.94 10.43 8.83 7.51 11.04 8.02 10.74 9.13 12.85 9.36 7.27 9.01 0.51 

Minimum 54 25 31 45 52 32 33 40 30 41 30 30 25 44 52 27 2.5 

Maximum 92 82 76 78 77 82 83 85 89 81 88 80 84 95 84 81 4.8 

Skewness -0.68 0.56 0.14 -0.13 0.18 0.09 -0.11 -0.15 -0.6 0.39 0.19 -0.42 -0.41 -0.17 -0.38 -0.28 -
0.06 

Std. error 
skewness 

0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 

Kurtosis 2.88 0.21 -0.1 -0.48 0.73 -0.4 0.02 0.23 0.46 -0.24 0.24 -0.11 -0.35 -0.07 -0.4 0.38 -
0.32 

Std. error 
kurtosis 

0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 

Shapiro-
Wilk W 

0.96 0.98 0.99 0.99 0.98 0.99 0.99 1 0.97 0.98 0.99 0.98 0.98 0.99 0.98 0.99 0.99 

Shapiro-
Wilk p 

<.001 0.005 0.486 0.315 0.049 0.689 0.245 0.85 0.003 0.034 0.545 0.033 0.009 0.665 0.009 0.462 0.13 

Where: EE 8401 = Industrial Practical Training 3, EE 8402 3 = Phase AC Synchronous Machines, EE 8403 = Digital Control System Engineering, EE 8404 = 
Programmable Logic Controller, EE 8405 = Electrical Power Systems Dynamics, EE 8406 = Power Electronics Converters, EE 8407 = Engineering 
Operation  Management, EE 8408 = Project I, EE 8409 = Law for Engineers, EE 8410 = Electrical Drives, EE 8411 =  Digital System Engineering, EE 8412 
= High Voltage Engineering, EE 8413 = Engineering Economic, EE 8414 = Switchgear and Protection Engineering, EE 8415 = Renewable Energy 
Technologies and EE 8416 = Project II. 

 
A standard deviation interpretation scale should be 
applied to classify variability levels objectively. One 
common approach categorises SD values as: Low 
variability: SD < 5 (indicating uniform performance). 
Moderate variability: SD between 5 and 10 
(indicating some differences but manageable 
diversity). High variability: SD > 10 (indicating 
significant disparities in performance) 
 

Using this scale, 10.52 and 11.04 fall within the high 
variability range, requiring instructional 
adjustments. Meanwhile, 3.94 represents low 
variability, suggesting consistency in student 
performance. Thus, high variability is neither 
inherently good nor bad—it signals the need for 
pedagogical reflection and targeted interventions to 
support all learners effectively. 
 

Skewness provides further insights into the 
distribution of students’ scores. A negative skew in 

EE 8401 (-0.68) suggests that most students 
performed well, with a few lower outliers. This 
pattern may indicate effective teaching strategies 
and comprehensive students’ understanding of 
course materials. Conversely, EE 8402 (0.56) exhibits 
a positive skew, meaning more students scored 
lower, which may indicate course difficulty or 
inadequate students’ preparation. According to 
Tabachnick et al., (2019), positively skewed 
distributions often signal the need for additional 
academic support, such as remedial programs, peer 
mentoring or adjustments to course content. Tinto 
(1993) emphasizes that courses with positive 
skewness may require prerequisite reinforcement 
and targeted academic interventions to help 
students grasp fundamental concepts. 
 

The kurtosis values further explain the shape of the 
distribution and the presence of extreme scores. EE 
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8401 (Kurtosis = 2.88) demonstrates a highly peaked 
distribution, indicating that most students scored 
close to the mean, suggesting a structured grading 
system or standardized learning outcomes (Field, 
2024). On the other hand, EE 8404 (-0.48) exhibits a 
flatter distribution, meaning that students’ 
performance varies significantly. Research by 
DeCarlo (1997) indicates that flatter distributions 
can be linked to inconsistent assessment methods 
or a wide range of students’ competencies, 
necessitating instructional modifications to ensure a 
more balanced learning experience. 
 

The Shapiro-Wilk test is a widely used statistical test 
to assess whether a dataset follows a normal 
distribution. The interpretation of the test results 
typically follows this scale: p > 0.05: Data does not 
significantly deviate from normality (assumption of 
normality is met); p < 0.05: Data significantly 
deviates from normality (non-normal distribution). 
 

In this study, several courses had p-values below 
0.05, indicating a significant departure from 
normality. However, only EE 8401 (p < .001) and EE 
8409 (p = .003) were highlighted, which raises the 
question of why other courses with similar p-values 
were excluded from the discussion. A more 
comprehensive analysis should either include all 
courses with p < 0.05 or clarify the criteria for 
selecting only these two courses. For example, this 
should be explicitly stated if EE 8401 and EE 8409 
exhibited the most extreme deviations from 
normality (e.g., lowest p-values or highest 
skewness/kurtosis). The deviation from normality 
suggests that students' performance is unevenly 
distributed, which may be attributed to factors, such 
as assessment methods, grading scales, instructional 
quality or differences in students’ preparedness 
(Razali & Wah, 2011). In practical terms, this non-
normality might indicate the presence of outliers, 
skewed distributions or multiple student subgroups’ 
performing at different levels. Depending on the 
severity of the deviation, appropriate data 
transformation (e.g., logarithmic or square root 
transformation) or non-parametric statistical 
techniques could be considered for further analysis. 
To strengthen the discussion, including a table of 
Shapiro-Wilk test results for all courses or a 
histogram of selected distributions would provide 
more precise insights into the extent of non-
normality across different courses. 
 

Meanwhile, EE 8403 (p = .486) and EE 8416 
(p=0.462) approximate normality, suggesting that 

the course assessments align well with expected 
students’ performance trends (Cohen, 2013). Non-
normality in students’ performance can affect the 
reliability of inferential statistical analyses, and in 
such cases, non-parametric statistical methods may 
be more appropriate for further evaluation 
(Tabachnick et al., 2019). 
 

These statistical findings have significant 
implications for targeted academic interventions. 
Courses with low mean scores and high variability, 
such as EE 8402 and EE 8409, require curricular 
adjustments, additional instructional support and 
structured assessment modifications to enhance 
students’ comprehension (Tinto, 1912; Biggs et al., 
2022). Positively skewed courses, where most 
students scored lower while a few excelled, indicate 
performance gaps that may stem from learning 
difficulties, instructional challenges or assessment 
complexity. Early diagnostic assessments help 
identify struggling students, enabling targeted 
interventions before gaps widen. They allow 
educators to differentiate instruction, tailor 
teaching strategies and provide immediate feedback 
to correct misconceptions early. Individualised 
learning plans—including remedial sessions, 
tutoring or adaptive learning tools—offer 
personalised support to enhance student 
performance in such courses (Hattie, 2008). 
 

Patterns and Implications of Pearson 
Correlation Coefficients among Course 
Performances: Insights into Academic Factors 
Influencing Student Success  
Analysing the relationships among students’ 
performance across engineering courses using 
Pearson correlation coefficients provides insights 
into common academic competencies, curricular 
alignment, and areas requiring targeted 
interventions. In this analysis, students' scores in 
various engineering courses serve as independent 
and dependent variables, as the goal is to assess 
how performance in one course correlates with 
performance in another. The correlation matrix in 
Table 4 demonstrates the associations of variables. 
Correlation analyses offer evidence-based pathways 
for refining curriculum design, instructional 
methodologies and students’ support mechanisms 
(Cohen, 2013; Tabachnick et al., 2019).  
The Pearson correlation coefficients (r) measure the 
strength and direction of the relationship between 
two variables (Table 3). The values range from -1 to 
+1 (Cohen, 2013; where: +1 indicates a perfect 
positive correlation (both variables increase 
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together); -1 indicates a perfect negative correlation 
(one variable increases while the other decreases); 0 

suggests no correlation (no relationship between 
variables). 

 

Table 3: Description of correlation values 
Pearson r Value Strength of 

Correlation 

Interpretation 

± 0.00 – 0.10 Very Weak Negligible or no meaningful relationship 

± 0.11 – 0.30 Weak Low correlation, minimal shared variance 

± 0.31 – 0.50 Moderate Noticeable association, some shared variance 

± 0.51 – 0.70 Strong Substantial relationship, significant shared variance 

± 0.71 – 0.90 Very Strong High correlation, large shared variance 

± 0.91 – 1.00 Near Perfect Extremely high association variables are highly related 

 

Table 4: Pearson Correlation Coefficients 

Courses 
EE 

8413 
EE 

8401 
EE 

8402 
EE 

8403 
EE 

8404 
EE 

8405 
EE 

8406 
EE 

8407 
EE 

8408 
EE 

8409 
EE 

8410 
EE 

8411 
EE 

8412 
EE 

8414 
EE 

8415 
EE 

8416 

EE 8413 1                

EE 8401 -
0.11 

1               

EE 8402 0.54 -
0.09 

1              

EE 8403 0.44 -
0.08 

0.56 1             

EE 8404 0.34 -
0.01 

0.38 0.36 1            

EE 8405 0.38 0.06 0.37 0.33 0.28 1           

EE 8406 0.54 -
0.05 

0.59 0.48 0.46 0.37 1          

EE 8407 0.47 -
0.04 

0.53 0.54 0.36 0.33 0.49 1         

EE 8408 0.15 0.05 0.26 0.27 0.23 0.18 0.21 0.2 1        

EE 8409 0.47 -
0.04 

0.54 0.46 0.35 0.3 0.47 0.54 0.11 1       

EE 8410 0.55 -
0.14 

0.52 0.48 0.41 0.28 0.56 0.43 0.25 0.44 1      

EE 8411 0.6 -
0.03 

0.46 0.51 0.4 0.29 0.51 0.45 0.23 0.5 0.52 1     

EE 8412 0.6 -
0.02 

0.53 0.39 0.35 0.27 0.59 0.42 0.2 0.43 0.5 0.56 1    

EE 8414 0.49 -
0.08 

0.58 0.49 0.36 0.3 0.52 0.46 0.16 0.54 0.48 0.48 0.56 1   

EE 8415 0.54 0.08 0.49 0.44 0.24 0.24 0.47 0.41 0.15 0.46 0.42 0.45 0.44 0.53 1  

EE 8416 0.23 -
0.01 

0.22 0.34 0.32 0.18 0.26 0.22 0.32 0.18 0.21 0.33 0.29 0.31 0.17 1 

 
Strong and positive correlations, such as those 
between EE 8413 (Engineering Economics) and EE 
8411 (Digital System Engineering) (r = 0.60) and 
between EE 8412 (High Voltage Engineering) and EE 
8411 (r = 0.56), suggest a positive interrelationship 
between these courses. The associations indicate 
that the competencies developed in one course are 
relevant in enhancing the performance in the other. 
This indicates the coherent curriculum structures at 
the university are under investigation (Heiman, 
1992). This aligns with literature, asserting that 
courses sharing theoretical underpinnings or similar 
problem-solving approaches exhibit strong 
correlations due to the reinforcement of shared 
cognitive skills (Biggs & Tang, 2022).  
 

Moderate correlations observed between courses, 
such as EE 8410 (Electrical Drives) and EE 8411 (r = 
0.52), as well as EE 8414 (Switchgear and Protection 

Engineering) and EE 8406 (Power Electronics 
Converters) (r = 0.52), indicate partial but not 
complete transferability of skills. Moderate 
interdependence suggests that students benefit 
from instructional strategies explicitly bridging 
content between the courses. These findings 
support educational theories that advocate 
integrative teaching approaches, reinforcing 
interconnected knowledge across related subjects 
(Hattie, 2008; Ramsden, 2003). For instance, 
structured reinforcement activities, such as 
integrated problem-solving exercises, could enhance 
skill transfer and reinforce underlying concepts, 
improving academic outcomes (Biggs aet al., 2022). 
 

Weak correlations were also identified in pairs like 
EE 8416 (Project II) with EE 8412 (r = 0.29) and EE 
8416 (Project II) with EE 8415 (Renewable Energy 
Technologies) (r = 0.17). Weak associations indicate 
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low transferability of skills, knowledge and 
attitudes. This suggests that these courses may be 
pedagogically or cognitively distinct. The weak 
correlations may result from differences in course 
objectives, instructional methods or assessment 
procedures (Field, 2024; Ramsden, 2003). For 
example, project-based courses, such as EE 8416 
emphasise practical application and higher-order 
cognitive skills, which differ from theoretical or 
concept-focused courses (Hattie, 2008). These 
findings underscore the importance of tailoring 
teaching methods and assessments to meet each 
course's specific cognitive demands and learning 
outcomes. 
 

Negative correlations were found between EE 8413 
(Engineering Economics) and EE 8401 (Industrial 
Practical Training 3) (r = -0.11), as well as between 
EE 8410 (Electrical Drives) and EE 8401 (r = -0.14). 
Negative correlations indicate an inverse 
relationship between course performances, 
meaning that as a student’s score in one-course 
increases, their score in another course tends to 
decrease. This suggests that strong performance in 
specific subjects may be associated with weaker 
performance in others. This observation aligns with 
theories suggesting that variations in students’ 
learning styles, cognitive strengths and course-
specific assessment strategies contribute to inverse 
relationships in performance. Negative correlations 
indicate that as performance in one course 

improves, performance in another tends to decline. 
This could be due to differences in learning 
preferences, where students who excel in practical, 
hands-on courses may struggle with theoretical, 
abstract subjects or vice versa (Tabachnick et al.,, 
2019). The correlation matrix also reveals distinct 
clusters of strong correlations among EE 8412, EE 
8413 and EE 8411, indicating common foundational 
skills across engineering fundamentals, digital 
systems, and economic principles. These clusters 
suggest that integrated instructional approaches, 
such as interdisciplinary projects or cross-course 
assignments, could reinforce shared competencies 
and enhance overall learning outcomes (Biggs et al., 
2022). Conversely, courses with weak or negligible 
correlations indicate areas where independent 
instructional strategies, specialised support, and 
tailored assessments may be necessary to address 
specific course objectives effectively. 
 

Scree Plot and Eigenvalues in Principal 
Component Selection: Implications for 
Dimensionality Reduction and Variance 
Interpretation in Engineering Course 
Performance  
The scree plot (Figure 1) and initial eigenvalues table 
(Table 5) provide critical insights into selecting 
principal components for dimensionality reduction 
in engineering course performance data.

 

 

 
Figure 1: Scree Plot of the Courses 
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Table 5: Principal Components, eigenvalues, % of variance and the cumulative % of the variances 

Principal Component Eigenvalue % of Variance Cumulative % 

1 7.7 45.31 45.31 

2 1.23 7.26 52.57 

3 1.07 6.28 58.85 

4 0.85 4.98 63.83 

5 0.79 4.63 68.46 

6 0.74 4.38 72.84 

7 0.71 4.16 76.99 

8 0.6 3.51 80.51 

9 0.54 3.15 83.66 

10 0.52 3.05 86.71 

11 0.46 2.71 89.42 

12 0.42 2.49 91.9 

13 0.39 2.32 94.22 

14 0.38 2.26 96.48 

15 0.3 1.79 98.27 

16 0.28 1.62 99.89 

17 0.02 0.11 100 

 
The Principal Component Analysis (PCA) is a widely 
used technique that can transform a dataset into a 
set of uncorrelated principal components, 
prioritizing those that explain the most variance 
(Jolliffe & Cadima, 2016). 
 

The scree plot (Figure 1) visualizes each 
component's eigenvalues, highlighting each one's 
contribution to the total variance. The steep decline 
in eigenvalues after the first principal component 
and the subsequent elbow at the second or third 
component indicate the optimal number of 
components to retain. This pattern suggests that 
additional components contribute minimal variance, 
aligning with standard PCA practices (Tabachnick & 
Fidell, 2019). 
 

The initial eigenvalues table (Table 5) confirms this 
observation in Figure 1. The Principal Component 1 
has an eigenvalue of 7.70, accounting for 45.31% of 
the total variance, making it the most dominant 
factor influencing course performance. Principal 
Component 2 explains an additional 7.26% 
(eigenvalue = 1.23), while Principal Component 3 
contributes 6.28% (eigenvalue = 1.07). The 
cumulative variance explained by these three 

components reaches 58.85%, supporting their 
retention as key explanatory variables.  
 

In contrast, components beyond the third 
component exhibit eigenvalues below 1 and 
contribute progressively smaller portions of 
variance, with the 17th component explaining only 
0.11% (eigenvalue = 0.02). According to the Kaiser 
criterion, which suggests retaining components with 
eigenvalues greater than 1, only the first three 
components (Principal Component 1, Principal 
Component 2 and Principal Component 3) are 
meaningful for summarising the dataset (Kaiser, 
1960). 
 
These findings have significant implications for 
interpreting variance in engineering course 
performance. The dominance of PC1 suggests that a 
single underlying factor—potentially a core 
academic competency or a common instructional 
framework—accounts for a substantial portion of 
students’ performance variations (Jolliffe, 2002). 
PC2 and PC3 are the next significant predictors, 
which explain an additional 13.54% of the variance, 
indicating that course performance is influenced by 
multiple dimensions, possibly reflecting disciplinary 
specializations, assessment methodologies, or 



                                                   98  East African Journal of Education and Social Sciences (EAJESS) 6(1), 88-101. 

 

learning strategies (Wold et al., 1987). The sharp 
decline in variance contribution beyond the third 
component supports dimensionality reduction, 
allowing for a more concise yet meaningful 
representation of students’ performance patterns 
(Tabachnick et al., 2019). 
 

It is fair to note that the dimensionality reduction 
suggested by PCA has direct implications for 
academic planning and curriculum optimization. 
Retaining only three principal components simplifies 
the complexity of analyzing students’ performance 
while preserving the majority of meaningful 
variance. This approach enables educators and 
administrators to identify key performance drivers, 
optimize course design and reduce redundancy in 
academic evaluations.  
 

Interpreting Principal Component Loadings and 
Uniqueness Values: Insights for Identifying 
Underlying Factors in Engineering Course 
Performance and Curriculum Design 
 

In Table 6, the component loadings represent the 
correlation between each course and its Principal 
Component, helping to identify the primary 
academic constructs that drive students’ 
performance. Jolliffe (2002) stated that loadings 
above 0.70 are considered strong indicators of a 
variable’s contribution to a Principal Component, 
and variables with high loadings should be 
interpreted based on conceptual coherence rather 
than just numerical thresholds. He emphasised that 
Principal Components should be understood in 
terms of their underlying structure, meaning that 
courses grouped under a single component should 
reflect a meaningful academic construct rather than 
an arbitrary selection of high-loading variables. For 
Principal Component 1 (PC1), strong loadings were 
observed for EE 8413 (Engineering Economics) 
(0.77), EE 8402 (Phase AC Synchronous Machines) 
(0.76), and EE 8409 (Law for Engineers) (0.74). These 
courses were selected because they form a 
coherent academic category, likely emphasising 
theoretical and analytical competencies. The 
decision to exclude other courses with loadings 
above 0.70 is based on cross-loadings. If a course 
loads strongly on multiple components, it may not 
contribute uniquely to a single construct, making its 
interpretation less clear. Additionally, courses with 
strong loadings but distinct content areas may align 
better with another principal component, which will 
be analysed separately. The high correlations (i.e., 
strong positive associations between a course and a 

principal component, typically above 0.70) suggest 
that PC1 represents fundamental engineering 
competencies, analytical reasoning, and shared 
assessment methodologies. This aligns with Wold et 
al. (1987), who found that courses emphasising 
mathematical modelling and theoretical analysis 
exhibit strong interdependencies in PCA, relying on 
similar cognitive skills, problem-solving techniques, 
and grading criteria. 
 

Principal Component 2 (PC2) shows strong loadings 
for EE 8408 (Project I) (0.76) and EE 8416 (Project II) 
(0.76), suggesting that this component reflects 
applied, project-based learning experiences. These 
courses require practical implementation of 
engineering concepts, teamwork and capstone 
project execution, distinguishing them from 
theoretical subjects. Principal Component 3 (PC3) is 
uniquely dominated by EE 8401 (Industrial Practical 
Training 3) (0.95), indicating that this course’s 
performance is driven by specialized hands-on 
training distinct from broader engineering 
competencies (Kaiser, 1958). 
 

Courses with moderate loadings across multiple 
components suggest interdisciplinary learning 
influences. For example, EE 8403 (Digital Control 
System Engineering) loads onto both PC1 (0.63) and 
PC2 (0.36), indicating a hybrid structure integrating 
both theoretical concepts and practical applications. 
This supports findings that engineering curricula 
benefit from aligning theoretical instruction with 
hands-on application to improve competency across 
domains (Biggs & Tang, 2022). 
 

Influence of Moderate and Shared Loadings: 
Interdisciplinary Dependencies 
 

Uniqueness Values and their Implications 
The uniqueness values indicate the proportion of 
variance not captured by the extracted principal 
components. Low uniqueness values suggest that 
the identified components well represent a course, 
whereas high uniqueness values signal additional 
unexplained variance, suggesting that other 
instructional or assessment-related factors may 
influence students’ performance (Tabachnick et al., 
2019). For instance, EE 8401 (Industrial Practical 
Training 3) has a very low uniqueness value (0.09), 
meaning its variance is almost entirely explained by 
PC3, confirming its specialized nature. Conversely, 
EE 8405 (Electrical Power Systems Dynamics) 
(uniqueness = 0.69) and EE 8404 (Programmable 
Logic Controller) (uniqueness = 0.58) exhibit higher 
uniqueness values, indicating additional external 
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influences on performance. These could stem from 
variations in instructional delivery, assessment 
structures, or student engagement levels (Field, 
2024). 
 

The Role of Varimax Rotation in Component 
Interpretation 
In Table 6, the varimax rotation applied in this PCA 
analysis enhances component clarity by maximizing 
variance explained by each factor while reducing 
cross-loadings (Kaiser, 1958). This rotation enables 
distinct clustering of courses under relevant 
principal components, confirming that PC1 captures 

analytical and theoretical courses, emphasizing 
mathematical, economic and legal principles. 
Secondly, PC2 corresponds to project-based and 
applied learning courses, requiring practical 
engagement and implementation. Finally, PC3 
uniquely represents specialized hands-on training, 
primarily associated with Industrial Practical 
Training 3. This approach validates PCA’s 
effectiveness in distinguishing independent 
performance dimensions and supporting targeted 
curriculum adjustments (Jolliffe & Cadima, 2016). 

 

Table 6: Principal Components Loadings 

Courses 
Component 

Uniqueness 
1 2 3 

EE 8413 0.77   0.39 

EE 8401   0.95 0.09 

EE 8402 0.76   0.39 

EE 8403 0.63 0.36  0.47 

EE 8404 0.43 0.49  0.58 

EE 8405 0.44   0.69 

EE 8406 0.73   0.4 

EE 8407 0.68   0.5 

EE 8408  0.76  0.4 

EE 8409 0.74   0.45 

EE 8410 0.68   0.44 

EE 8411 0.69   0.45 

EE 8412 0.71   0.46 

EE 8414 0.74   0.43 

EE 8415 0.72   0.43 

EE 8416   0.76   0.4 

 

Implications for Curriculum Design and 
Academic Assessment 

The findings present several strategic insights for 
improving engineering education and students’ 
learning outcomes. They include optimizing course 
structuring based on key academic competencies, 
enhancing practical and capstone learning support, 
addressing unexplained variance in high-uniqueness 
courses and differentiating assessment strategies 
for course-specific learning goals. 
 

Conclusions and Recommendations 
Conclusions  
The findings from this study provide valuable 
insights into students’ performance trends, course 
interdependencies and academic structures in 
engineering education. The KMO measure 
confirmed data suitability for factor analysis while 

descriptive statistics highlighted performance 
disparities across courses, necessitating targeted 
instructional adjustments. Pearson correlation 
coefficients revealed strong, moderate and weak 
relationships between subjects, indicating areas for 
curriculum reinforcement or differentiation. 
Principal Component Analysis identified three key 
components: theoretical knowledge, applied 
learning and specialised practical training, 
emphasising the importance of a balanced 
curriculum. These insights collectively inform 
curriculum optimisation, assessment strategies and 
academic interventions, ensuring improved student 
learning outcomes and institutional effectiveness. 
 

Recommendations 
The study recommends that core theoretical 
courses should be aligned with standardised 
assessments that measure conceptual 
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understanding and application to enhance 
curriculum effectiveness and reinforce analytical 
and problem-solving competencies. Project-based 
courses, such as Project I (EE 8408) and Project II (EE 
8416), should integrate competency-based learning 
models and industry collaborations to strengthen 
applied engineering skills and bridge the gap 
between academia and professional practice. 
Specialised training courses, including Industrial 
Practical Training (EE 8401), require mentorship 
programs and skill-based evaluations to ensure that 
students develop the technical expertise and 
industry-relevant competencies necessary for career 
readiness.  
 

Additionally, instructors should incorporate active 
learning techniques like problem-based learning, 
collaborative exercises and real-world case studies 
to improve students’ engagement and conceptual 
understanding. The findings further suggest bridging 
theoretical knowledge with practical application 
through experiential learning opportunities, 
integrative projects and applied assessments. Future 
research should examine the long-term stability of 
Principal Components, identifying external factors 
influencing high-uniqueness courses and 
incorporating students’ feedback for a more holistic 
understanding of academic performance trends. By 
adopting these data-driven recommendations, 
institutions can enhance curriculum effectiveness, 
close performance gaps and ensure that engineering 
education remains adaptive, equitable, and 
responsive to industry demands. 
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